

PERTH MODERN SCHOOL

Exceptional schooling. Exceptional students. **Independent Public School**

Course _ Math	nematics Methods Year _11_
Student name: Mark Inquide Teacher name:	
Date:	21 September 2020
Task type:	Response
Time allowed for this task:45 mins	
Number of questions:	7
Materials required:	This assessment is calculator-free
Standard items:	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters
Special items:	Drawing instruments, templates, notes on one unfolded sheet of A4 paper (double sided)
Marks available:	44 marks
Task weighting:	_16%
Formula sheet provided: Yes	
Note: All part questions v	vorth more than 2 marks require working to obtain full marks.

Question 1 (2.1.1 - 2.1.7)

[5+1+4 = 10 marks]

Sketch the graphs of $y = 2^x + 2$ and $y = -2^x + 4$ on the axes below, showing important features of each graph.

(b) Using your graph (or otherwise), find the intersection point of these two functions.

From the graph, intersection is (0,3) 0 2+2 = -2 + 4

Solve for *x*: $9^{2x-1} = 243$

922-1 = 243

Question 2 (2.3.1, 2.3.4, 2.3.5)

[4+2 = 6 marks]

For the function $f(x) = 3x^2$, use <u>first principles</u> to find $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ and hence show that f'(x) = 6x

$$f(sc) = 3x^2 + (sch) = 3(sch)^2$$

- him flocth) - floc)

= lin 3(x+2xh+2)-3xe v

= lini 302 + 6xh + 3h' - 35e'

= $\lim_{h \to 0} \frac{\lambda(6x + 3h)}{\lambda} = 6x \text{ as } h \to 0$

(b) Briefly describe what $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ represents on a graph of f(x).

Instantaneous rate of change of flow) at 2. 0%, Gradient of tangent to flow) at point x.

Question 3 (2.3.7, 2.3.13-2.3.17) [4+4=8 marks]

The curve with the equation y = (x + 1)(x - 2)(x - 5) cuts the x - axis at the points A(-1,0), B(2,0) and C(5,0). The expanded equation is $y = x^3 - 6x^2 + 3x + 10$

Find $\frac{dy}{dx}$ and hence show that the <u>tangents</u> to the curve at points A and C are parallel.

dy = 3 2 - 12 x +3

Ax = -1 $AY = -1 \Rightarrow dy = 3 + 12 + 3 = 18 = (both)$ $AY = -1 \Rightarrow dy = 3(25) - 12(5) + 3 = 18$ = 75 - 60 + 3 = 18

Tangents have the same gradient · tangents are parallel.

(b) Find the equation of the <u>tangent</u> to the curve at the point C and find the point (x, y) where the <u>tangent</u> crosses the y - axis.

where the tangent crosses the
$$y - axis$$
.

 $y = 18x + c$
 $0 = 18(5) + c$
 $y = 18x - 90$

Question 4 (2.3.8 - 2.3.11)

At (5,0) Substitute (x, y)

 $y = 18x - 90$
 $y = 18x - 90$

A jet pilot follows a flight path defined by $f(x) = x^3 - 9x^2 + 15x - 8$.

(a) Is the gradient of the flight path positive (going up) or negative (down) at the point (2, -6)? Explain your answer.

$$f(x) = x^3 - 9x^2 + 155x - 8$$

 $f'(x) = 3x^2 - 18x + 15$ Substitute $x = 2$
 $= 12 - 36 + 15$
 $= -9$

Negative gradient shows that the flight path is downwards at (2,-6) (or x=2)

(b) At what x - values on the curve f(x) is the tangent <u>parallel</u> to the line y = 3?

$$y = 3 \Rightarrow y' = 0$$

Solve $f'(x) = 3x^2 - 18$ se $+15 = 0$
 $= 3(x^2 - 6x + 5)$
 $= 3(x^2 - 5)(x - 1) \Rightarrow x = 5$ or 1

Question 5 (2.3.3 - 2.3.7, 2.3.22)

[4 marks]

Find y in terms of x if $\frac{dy}{dx} = 3x^2 - 2x - 6$ and the function f(x) passes through the point (2,4).

 $f'(x) = 3x^{2} - 2x - 6$ $f(x) = \int (3x^{2} - 2x - 6) dx$ $f(x) = \int (3x^{2} - 2x - 6) dx$ $= \frac{3x^{3}}{4 \cdot 2x^{2}} - 6x + 2$ $= \frac{3x^{3}}{4 \cdot 2x^{2}} - 6x + 3$ $= \frac{3x^{3}}{4 \cdot 2x^{2}} - 6x$

Question 6 (2.3.10) [4 marks]

[3+3 = 6 marks]

A section of roller coaster has been constructed using the function:

$$f(x) = x^3 + 3x^2 - 4$$

An amusement park photographer is taking "action shots" near the roller coaster where the gradient is equal to -3 ("negative 3"). In terms of x - values, where is the photographer working? Explain your answer with suitable working.

$$f(x) = 3x^{2} + 6x$$

$$f'(x) = 3x^{2} + 6x$$

$$f''(x) = 6x + 6$$
Set $f''(x) = -3$
at $x = -1$, $f''(x) = 0$

$$f''(x) = 6x + 6$$

$$f''(x) = 0$$

A function V(t) for which V'(t) = 4t + k, (where k is a constant), has a turning point at (1,-2). Find:

(a) The value of
$$k$$

$$V'(t) = 4t + k = 0 \text{ at } (1,-2) \implies k = -4$$

$$(-V(t) = 4t^2 + kt + 2 = 2t^2 + kt + 2$$

(b) The value of
$$V(t)$$
 when $t = 4$

$$V(t) = 2t^{2} - 4t + c$$

$$Subs (1, -2)$$

$$-2 = 2 - 4 + c$$

$$V(t) = 2t^{2} - 4t$$

$$V(t) = 2t^{2} - 4t$$
when $t = 4$, $V(t) = 2(16) - 4(4) = 16$